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Abstract. In this paper, we introduce an improved scale invariant fea-
ture correspondence algorithm which depends on the Similarity-Topology
Matching algorithm. It pays attention not only to the similarity between
features but also to the spatial layout of every matched feature and its
neighbours. The features are represented as an undirected graph where
every node represents a local feature and every edge represents adjacency
between them. The topology of the resulting graph can be considered as
a robust global feature of the represented object. The matching process
is modeled as a graph matching problem; which in turn is formulated as a
variation of the quadratic assignment problem. The Similarity-Topology
Matching algorithm achieves superior performance in almost all the ex-
periments except when the image has been exposed to scaling deforma-
tions. An amendment has been done to the algorithm in order to cope
with this limitation. In this work, we depend not only on the distance
between the two interest points but also on the scale at which the interest
points are detected to decide the neighbourhood relations between every
pair of features. A set of challenging experiments conducted using 50
images (contain repeated structure) representing 10 objects from COIL-
100 data-set with extra synthetic deformations reveal that the modified
version of the Similarity-Topology Matching algorithm has better per-
formance. It is considered more robust especially under the scale defor-
mations.
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1 Introduction

Image matching or in other words, comparing images in order to obtain a mea-
sure of their similarity, is an important computer vision task. It is involved in
many different applications, such as object detection and recognition, image
classification, content based image retrieval, video data mining, image stitching,
stereo vision, and 3D object modeling. A general solution for identifying simi-
larities between objects and scenes within a database of images is still a faraway



goal. There are a lot of challenges to overcome such as viewpoint or lighting
variations, deformations, and partial occlusions that may exist across different
examples.

Furthermore, image matching as well as many other vision applications rely
on representing images with sparse number of distinct keypoints. A real challenge
is to efficiently detect and describe keypoints, with robust representations invari-
ant against scale, rotation, view point change, noise, as well as combinations of
them [1].

Keypoint detection and matching pipeline has three distinct stages which
are feature detection, feature description and feature matching. In the feature
detection stage, every pixel in the image is checked to see if there is a unique
feature at this pixel or not. Subsequently, during the feature description stage,
each region (patch) around the selected keypoints is described with a robust and
invariant descriptor which can be used to match against other descriptors. Fi-
nally, at the feature matching stage, an efficient search for prospective matching
descriptors in other images is made [2].

In the context of matching, a lot of studies have been used to evaluate interest
point detectors as in [3], [4]. On the other hand, little efficient work has been
done on the evaluation of local descriptors. K. Mikolajczyk and C. Schmid [5],
proposed and compared different feature detectors and descriptors as well as
different matching approaches in their study. Although this work proposed an
exhaustive evaluation of feature descriptors, it is still unclear which descriptors
are more appropriate in general and how their performance depends on the
interest point detector.

D. G. Lowe [6], proposed a new matching technique using distinctive invariant
features for object recognition. Interest points are matched independently via a
fast nearest-neighbour algorithm to the whole set of interest points extracted
from the database images. Therefore, a Hough transform to identify clusters
belonging to a single object has been applied. Finally, least-squares solution for
consistent pose parameters has been used for the verification.

There are two levels to measure the images similarity which are patch and
image levels. In the patch level, the distance between any two patches is measured
based on their descriptors. In the image level, the overall similarity between any
two images is calculated which in most cases contain many patches.

The Minkowski-type metric has been used to measure the distance between
patches in most of researches. Suppose there are two patches (vectors), (x1,x2,...,xm),
(y1,y2,...,ym), respectively. The Minkowski metric is defined as in (1):

D(X,Y ) = (

P
∑

i=1

|Xi − Yi|
r)1/r (1)

When r = 2, it is the Euclidean distance (L2 distance), and it is the Man-
hattan distance (L1 distance) when r = 1 [7].

In the approach proposed in the present paper both local and global features
are considered simultaneously.We try to retain the locality of the features advan-
tages in addition to preserving the overall layout of the objects. The similarity



between the local features has been used in conjunction with the topological
relations between them as a global feature of the object.

In this paper, the approach presented in [8], [9] is modified to be scale invari-
ant. In addition, intensive experiments are conducted mainly focused on images
with different resolutions as the objective of the modified algorithm to be more
scale invariant. The images contain a duplication of the same objects which
reflects the scope of work (dealing with repeated structure).

This paper is organized as follows: The proposed scale invariant feature corre-
spondence algorithm is introduced in section 2. Section 3, presents the conducted
experiments to evaluate the performance of the modified matching approach. Fi-
nally, the conclusions of this work and the recommendations for future work are
presented in sections 4 and 5, respectively.

2 Proposed Matching Approach

Conventional matching approaches reduce the matching problem to a metric
problem. Therefore, the choice of a metric is substantial for the matching of
local features. Most approaches depend mainly on finding the minimum distance
between features (descriptors) in feature space as shown in (2), where Dij is the
distance measure between feature i from the first image and feature j from the
second image. Xij is a matching indicator between feature i and feature j, i.e.
Xij = 1 if feature i in the 1st image is mapped to feature j in the 2nd image and
Xij = 0 otherwise. Note that Xij ∈ {0, 1}.

Min F =
∑

∀i,j

Dij Xij (2)

Limitations: The similarity measure between features deals with each fea-
ture individually rather than a group of features. Consequently, the minimum
distance between features can be misleading in some cases and as a result the
performance of the algorithm deteriorates. In other words, the minimum dis-
tance criterion has no objection for a feature to be wrongly matched as long as
it successfully achieves the minimum distance objective.

2.1 Similarity-Topology Matching Algorithm

In [8], a new matching algorithm called ”Similarity-Topology Matching” has
been proposed . This algorithm pays attention not only to the similarity between
features but also to the spatial layout of every matched feature and its neighbors.
A new term, describing the neighbourhood/ topological relations between every
pair of features has been added α

∑

∀i,j,k,l
Xij Xkl Pij,kl. In addition, another

term has been added to relax the constraints β (Min(m,n) −
∑

∀i,j
Xij) as

shown below in (3).

Min F =
∑

∀i,j

Dij Xij + α
∑

∀i,j,k,l

Xij Xkl Pij,kl + β (Min(m,n) −
∑

∀i,j

Xij) (3)



Subject to:

n
∑

j=1

Xij ≤ 1 (a)

m
∑

i=1

Xij ≤ 1 (b)

The second term in (3) represents a penalty term over all pairs of features.
Pij,kl is called a penalty matrix. It is used to penalize matching pairs of features
i and k in one image with corresponding pairs j and l in the other image if they
have different topologies. It is binary and of (m×n,m×n) dimension; where m, n
are the number of features in the first and the second images respectively. Pij,kl =
1 if the features j, l in the second image have different topology when compared
to features i, k in the first image. Accordingly, the penalty matrix is calculated
by applying the XOR logical operation to the adjacency matrices(AM1, AM2)
of the two images as in (4). In XOR, the output is true whenever both inputs
are different from each other. For example, if one input is true and the other is
false. The output is false whenever both inputs are similar to each other, i.e.,
both inputs are true or false.

P (i, j, k, l) = XOR (AM1(i, k), AM2(j, l)) (4)

(α) is called a topology coefficient. It indicates how much the matching al-
gorithm depends on the topology between images. In the experiments, (α) is
chosen in a range from 0 to 0.1. The topology coefficient is effective and has a
great impact when the interest points are similar to each other. On the contrary,
it has almost no impact when the difference of similarities between the interest
points is high. (β) is called a threshold coefficient. It indicates how much the
matching algorithm depends on the features matching threshold. In the experi-
ments, (β) is chosen in a range from 0 to 0.5. These parameters are determined
by cross validations. A more detailed information about these parameters and
how are the results are sensitive to their values is illustrated in section (3.3).

Constraints Interpretation: Constraint (a): There exists at most one ’1’
in every column of x. Constraint (b): There exists at most one ’1’ in every row of
x. The two constraints ensure that every feature in the first image should match
to at most one feature in the second image.

2.2 Scale Invariant Similarity-Topology Matching Algorithm

Analysis and Modification An analysis is done to determine why the algo-
rithm isn’t accurate enough in case of the scaling deformation. It is noticed that
the adjacency matrix (AM) of an image is constructed using the neighbourhood
idea. In other words, if the distance between any two interest points in the same
image is less than a threshold then they are called neighbours to each other. Con-
sequently, the neighbourhood relation between each two interest points depends



only on the distance between them, which is not valid specially when dealing
with different scales.

The two interest points in fig. 1 are the same. The algorithm considers them
as neighbours to each other in the left image but not in the right image which
is counter intuitive, as they are neighbours in both cases.

Fig. 1: Scaling problem example

An amendment is done to the algorithm in order to cope with this limitation.
The modification makes the Neighbourhood Relation (NR) depend not only on
the distance between the two interest points as in the Similarity-Topology but
also on the scales at which the two interest points are detected. Hence, the
Neighbourhood Relation (NR) between two interest points i and k in an image
is defined as shown in (5).

NR =
Distance between two interest points

Average scale of the two interest points

=
dik

Avg(σi, σk)
(5)

Accordingly, the adjacency matrix is modified and calculated as in (6):

AM(i, k) =

{

1 if NR < Threshold

0 otherwise

}

(6)

Where dik is the Euclidean distance between interest points i and k in the
same image spatial domain. σi and σk are the scales at which the interest points
i and k are detected respectively.

Scale Invariant Similarity-Topology Matching Algorithm
Algorithm (1) gives a summary of the modified version of the ”Similarity-

Topology Matching” approach. This new algorithm achieves superior perfor-
mance in almost all the experiments specially when the images are exposed to
scaling deformations.

This investigated problem has a quadratic-objective function which is subject
to linear constraints. It is called a binary (0-1) Quadratic Programming problem



Algorithm 1 Scale Invariant Similarity-Topology Matching

Input: A pair of images, topology coefficient (α), and threshold coefficient (β).
1. For every image:

(a) Detect interest points (select strongest n);
(b) Extract a descriptor for every interest point;
(c) Construct adjacency matrix using equations (5) and (6);

2. For every feature (descriptor) in the 1st image: compute the distance between
it and all the features in the 2nd image using the Euclidean distance in feature
space;

3. Penalize pairs of matched features taking into consideration their adjacency
relations;

P (i, j, k, l) = XOR(AM1(i, k), AM2(j, l))

4. Solve the optimization problem using (7) (features similarity and topological
constraints);

Output: List of features correspondences.

[10]. Consequently, the objective function formulated in (3) can be rewritten as
in (7):

Min F =
∑

∀i,j

Xij(Dij − β) + α
∑

∀i,j,k,l

Xij Xkl Pij,kl (7)

This optimization problem is solved using IBM ILOG CPLEX Optimiza-
tion Studio (usually called just CPLEX for simplicity) which is an optimization
software package.

3 Experimental Results

3.1 Data-Set

Columbia Object Image Library (COIL-100) has been used in the experi-
ments [11]. COIL-100 is a database of color images which has 7200 images of 100
different objects (72 images per object). These collections of objects have a wide
diversity of complex geometric and reflectance characteristics. Consequently, it
is the most suitable data-set which can be helpful in the proof of concept of the
proposed feature correspondence approach. Fig. 2, depicts 10 objects from the
Coil-100 data-set.

The Challenge Fifty images representing ten objects of the aforementioned
data-set are chosen to perform the experiments. These objects with extra syn-
thetic deformations such as rotation, scaling, partial occlusion and heavy noise
are used for this purpose. In addition, a duplication of the same object is put in
the same image with deformations, but one as a whole and one as parts to make
the matching more challenging and to test the principle goal of the new matching
strategy. In this case, a feature in the first image has almost two similar features



Fig. 2: Examples of objects from the COIL-100 data-set used for the evaluation

in the second image. Fig. 3, shows an example to illustrate the idea. The feature
in the first image (left) has two similar features in the second image (right). This
raises a question, which one should be matched. This challenge demonstrates the
idea of the proposed approach, that rely on the similarity as well as the topo-
logical relations between the features as shown in the experiments in the next
subsection.

Fig. 3: An illustrative example of the duplication of the same feature

3.2 Experiments

Three different experiments are conducted to test the modification introduced
in the ”Similarity-Topology Matching” algorithm to make it scale invariant. All
of these tests are done on images having different resolutions. The first test is
done between a pair of images with different scales only. The second test is done
between a pair of images with different scales as well as a duplication of the
same object as parts in the second image. The last test is done like the second
experiment but with extra deformations such as rotation and view point changes.
These tests are ranged in difficulty from easiest to hardest as shown table 3.

Features Detection and extraction: the interest points are detected and ex-
tracted using SURF (Speeded Up Robust Features) [12]. We demonstrate in [9]
that SURF algorithm can be used prior to the proposed matching approach to
get more robust feature correspondence.

Evaluation criterion: For each pair of images, every interest point in image
1 is compared to all interest points in image 2 according to their descriptors.



The detection rate and the False Positive Rate (FPR) are calculated in order to
evaluate the performance. The detection rate R is defined as the ratio between
the number of correct matches and the number of all possible matches (number
of correspondence). The target is to maximize the detection rate and to minimize
the false positive rate.

R =
Number of correct matches

Number of possible matches within the full instance

The experiments have been done using three state-of-the-art strategies which
are Threshold, Nearest Neighbour (NN) and Nearest Neighbour Distance Ratio
(NNDR) in addition to the Similarity-Topology Matching as well as its modified
version. In the proposed algorithm and its modified version as well, the values of
the topology penalty coefficient and the threshold penalty coefficient are 0.05 and
0.3 respectively. The modified version of the ”Similarity-Topology Matching” al-
gorithm has better performance. It is considered more robust specially under the
scale deformations. As shown in table 1, the Modified-Version of the algorithm
not only has higher detection rate (0.65), but also it almost eliminates the false
matches (0.01) which is more important specially in the localization problem.

Table 1: The experimental results summary
Matching Strategy Detection Rate FPR

NNDR 0.40 0.04

NN 0.48 0.13

Threshold 0.55 0.28

Similarity-Topology 0.46 0.08

Modified-Version 0.65 0.01

3.3 Topology Penalty Coefficient Sensitivity

The main contribution of this research is in combining the similarity between
features with their topological relations in order to obtain high detection rates
as well as low false matches. Fig. 4 depicts an example that demonstrates the
influence of the topology penalty coefficient on feature correspondence task.
When the feature correspondence depends only on the features similarity and
there are no effect of the topological relations (α = 0.0), the number of the
correctly and wrongly matched features are 17 and 6 respectively as shown in fig.
4a. When the feature correspondence depends not only on the features similarity
but also on the topological relations, the true positive matches are increased
and in addition the false positive matches are decreased. When (α = 0.005), the
true positive matches increased to 21 while the false positive matches decreased
to 2 as shown in fig. 4b. Finally, when (α = 0.05), the true positive matches
reached to 23, while the false positive matches are eliminated as shown in fig.
4c. Increasing (α) after that will not affect neither the true positive matches nor
the false positive matches. Table 2 summarizes this experimental results.



From this example, it is clear that the topology penalty coefficient α has a
significant impact on the feature correspondence process. With the proper choice
of (α), the number of correctly matched features increases and the number of
wrongly matched features decreases or is eliminated.

The values (α = 0.05 and β = 0.3) are the best for all experiments conducted
in the aforementioned data-set. In addition, these values could work well for other
data-sets but there is no guarantee that they are the best values. A generalization
approach for these values to be applicable for any data-set is one of the future
work as mentioned in section 5.

Table 2: Topology penalty coefficient sensitivity: example
α True Positive False Positive

0.000 17 6

0.005 21 2

0.05 23 0

(a) Feature correspondence between image 1 and image 2, α = 0

(b) Feature correspondence between image 1 and image 2, α = 0.001

(c) Feature correspondence between image 1 and image 2, α = 0.01

Fig. 4: Topology penalty coefficient sensitivity: example



4 Conclusions

In this paper, an improved scale invariant feature correspondence algorithm
which depends on the ”Similarity-Topology Matching” algorithm has been in-
troduced. In this approach, both local and global features are considered simul-
taneously and a set of control parameters is employed to tune the performance
by adjusting the significance of global vs. local features. The major contribution
of this research is depending not only on the distance between the two interest
points but also on the scale at which the interest points are detected to decide
the neighbourhood relations between every pair of features. Three different tests
focusing on scaling deformations have been conducted. From the experimental
results, it is noticed that the number of correctly matched features is increased.

In conclusion, the modified version of the ”Similarity-Topology Matching”
algorithm has superior performance specially when the images have been exposed
to scaling deformations.

5 Future Work

After the proof of concept of the aforementioned approach has been verified, a
lot of work remains to be done in order to generalize the local features matching
approach and achieve high degree of robustness and computational efficiency.
First, a preprocessing step is required to automatically evaluate the parameters
values (alpha, beta). Second, an optimization of the algorithm to be more com-
putationally efficient should be made without any loss in the algorithm accuracy
as this algorithm may be used in real-time applications. Finally, applying this
approach in a particular robot as an application.
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